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اختار مركز أبحاث الذكاء الاصطناعي (أیرند) ھذا البحث لیقدم تلخیصاً عنھ یبرز أھمیتھ ویقربھ للباحثین

یقدم ھذا البحث مفھوم "مختبر افتراضي" یعمل كمنصة تعاونیة بین وكلاء الذكاء الاصطناعي والباحثین البشر للقیام
بأبحاث علمیة معقدة ومتعددة التخصصات. تم اختبار ھذا النظام من خلال تصمیم أجسام النانو جدیدة لاستھداف

متغیرات SARS-CoV-2 الحدیثة، مما أدى إلى تطویر 92 جسم نانو جدیداً، بعضھا أظھر خصائص ربط واعدة مع
المتغیرات الفیروسیة.

النقاط الرئیسیة في البحث:
 (Virtual Lab):1مفھوم المختبر الافتراضي. 

التعريف :منصة للبحث العلمي تجمع بين وكلاء ذكاء اصطناعي متخصصين (مثل عالم أحياء أو عالم 

كمبيوتر) وباحث بشري لتوجيه النقاشات واتخاذ القرارات.
آلية العمل: 

يقود وكيل الباحث الرئيسي (Principal Investigator - PI) الفريق، ويقوم بتحديد الوكلاء o

الآخرين بناءً على المشروع.
يتم تنفيذ الأبحاث عبر اجتماعات فريقية لمناقشة الأسئلة العامة، واجتماعات فردية لتنفيذ o

المهام المحددة.

 SARS-CoV-2:2تطبیق المختبر الافتراضي على تصمیم أجسام النانو لـ. 

 SARS-CoV-2.من KP.3 للمتغير (Spike Protein) الهدف :تطوير أجسام النانو تربط بروتين سبايك 

المراحل: 

اختيار الفريق :تم اختيار وكلاء متخصصين (عالم مناعة، متخصص في التعلم الآلي، عالم أحياء .1
حاسوبي).

 من تصميمها من الصفر، مع
ً

تحديد المشروع :قرر الفريق تعديل أجسام النانو موجودة بدًل .2
VHH-72). ،Nb21 ،H11-D4 ، (Ty1اختيار أربــع أجسام النانو مرشحة

AlphaFold-Multimer ،لتحليل الطفراتESM  اختيار الأدوات :تم استخدام أدوات مثل .3
للتنبؤ بالبنية، و Rosettaلتقييم طاقة الربط.

تنفيذ الأدوات :كتابة وتنفيذ الأكواد لتحليل الطفرات، التنبؤ بالبنية، وتحليل طاقة الربط. .4
تصميم مسار العمل :تطوير عملية تكرارية لتحسين أجسام النانو عبر عدة جولات من الطفرات. .5

 .3النتائج:

تصمیم أجسام النانو: 

،AlphaFold ipLDDT ، ESM LLRتم تصميم جسم نانو جديد ، مع تحسينات كبيرة في مقاييس o

و Rosetta dGمقارنة بالأجسام النانو الأصلية.
أظهر اثنان من هذە أجسام النانو Nb21) و (Ty1خصائص ربط محسّنة مع المتغيرات الحديثة o

 (Wuhan).بالإضافة إلى السلالة الأصليةKP.3) و(JN.1 
التقییم التجریبي: 

تم اختبار أجسام النانو على نطاق واسع باستخدام ELISA مع بروتينات RBD مختلفة. o



o %38من أجسام النانو أظهرت مستويات عالية من التعبير القابل للذوبان.

أظهر أجسام النانو Nb21 و Ty1المحسّنان قدرة محسنة على الربط مع المتغيرات الحديثة o

مقارنة بنسخها الأصلية.

الأھمیة والتحدیات:
أھمیة البحث:

تقدم في البحث العلمي :يظهر المختبر الافتراضي قوة التعاون بين البشر والذكاء الاصطناعي في تسريــــع 

الاكتشافات العلمية.
تطبيقات واسعة :يمكن تطبيق النظام على مجموعة متنوعة من مجالات البحث، مما يفتح الباب لتطوير 

تقنيات جديدة في الطب والعلوم الحاسوبية.

التحدیات:
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العلمية الأحدث.
الحاجة إلى تحسين التوجيه :يتطلب النظام هندسة متقدمة للمطالبات لضمان الحصول على إجابات 

مفيدة من الوكلاء.
قيود الأدوات :الأدوات المستخدمة مثل AlphaFold و Rosettaليست مثالية، مما قد يؤثر على دقة 

النتائج.
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البحث، وليس مجرد أداة.

ا دقيقًا.
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Abstract
Science frequently benefits from teams of interdisciplinary researchers. However, most 
scientists don’t have access to experts from multiple fields. Fortunately, large language models 
(LLMs) have recently shown an impressive ability to aid researchers across diverse domains by
answering scientific questions. Here, we expand the capabilities of LLMs for science by 
introducing the Virtual Lab, an AI-human research collaboration to perform sophisticated, 
interdisciplinary science research. The Virtual Lab consists of an LLM principal investigator 
agent guiding a team of LLM agents with different scientific backgrounds (e.g., a chemist agent,
a computer scientist agent, a critic agent), with a human researcher providing high-level 
feedback. We design the Virtual Lab to conduct scientific research through a series of team 
meetings, where all the agents discuss a scientific agenda, and individual meetings, where an 
agent accomplishes a specific task. We demonstrate the power of the Virtual Lab by applying it 
to design nanobody binders to recent variants of SARS-CoV-2, which is a challenging,
open-ended research problem that requires reasoning across diverse fields from biology to 
computer science. The Virtual Lab creates a novel computational nanobody design pipeline that
incorporates ESM, AlphaFold-Multimer, and Rosetta and designs 92 new nanobodies. 
Experimental validation of those designs reveals a range of functional nanobodies with 
promising binding profiles across SARS-CoV-2 variants. In particular, two new nanobodies 
exhibit improved binding to the recent JN.1 or KP.3 variants of SARS-CoV-2 while maintaining 
strong binding to the ancestral viral spike protein, suggesting exciting candidates for further 
investigation. This demonstrates the ability of the Virtual Lab to rapidly make impactful,
real-world scientific discovery.

Introduction
Interdisciplinary science research is complex, requiring increasingly large teams of researchers
with expertise in diverse fields of science1–3. For example, the paper by Jumper et al.4 that 
introduced AlphaFold 2 and later led to the 2024 Nobel Prize in Chemistry included 34 
researchers with expertise across computer science, machine learning, bioinformatics, and 
structural biology. Building and coordinating large teams of researchers who speak different 
scientific languages and have different scientific priorities is challenging5,6. Furthermore, it can
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be harder for under-resourced groups without connections to many experts across fields to
engage in complex, interdisciplinary science, especially when dedicated interdisciplinary 
research funding is lacking7.

One source of broad scientific knowledge and insights that researchers are now turning to is 
large language models (LLMs), such as ChatGPT8 and Claude9. These LLMs have been trained
on vast quantities of text data, including scientific literature, and they are therefore able to aid 
researchers in several ways such as by answering science questions, summarizing scientific 
papers, and writing scientific code10. Several studies have explored the scientific capabilities of 
LLMs by measuring their ability to answer scientific questions, and LLMs have shown high 
accuracy and can even match or outperform human scientists at these tasks11–16.

However, answering individual science questions is very different from engaging in sophisticated
research that involves multi-step reasoning across disparate scientific fields with many 
unknowns. While some prior work has explored the application of LLMs to research, these 
studies have often focused on a single scientific domain and have explored a relatively narrow 
set of research questions. For example, ChemCrow is a framework that gives GPT-4 access to 
chemistry tools and can thus solve components of a chemistry research problem, but it cannot 
tackle an open-ended, interdisciplinary research problem17. Another framework called 
Coscientist includes GPT-4-powered modules such as a planner and a web searcher to handle 
several aspects of research18. However, Coscientist is primarily applied to relatively standard 
chemistry tasks such as chemical synthesis planning as opposed to high-level research design 
across disciplines. In contrast, the AI Scientist aims to use LLMs to perform the entire scientific 
process from generating a hypothesis to writing code to drafting a paper, but the applications 
are limited to narrow subfields of machine learning without real-world experiments or 
validation19. Si et al.20 similarly explore the use of LLMs for research idea generation and 
demonstrate promising results when comparing LLM research ideas to human research ideas, 
but the applications are limited to the field of natural language processing and do not include 
any implementation of the research ideas.

Here, we introduce the Virtual Lab to overcome these shortcomings via an AI-human research 
collaboration that performs interdisciplinary science to investigate broad, complex research 
questions. In the Virtual Lab, a human researcher guides a set of interdisciplinary AI agents21,22, 
such as a biologist or computer scientist, through a set of research meetings that tackle the 
different phases of a research project. The AI agents are run by an LLM that powers their 
scientific reasoning abilities with instructions that guide each agent’s scientific expertise and 
interaction with the other agents and the human researcher. The Virtual Lab architecture is 
versatile and can thus be applied to a wide variety of interdisciplinary science research projects.

To demonstrate the abilities of the Virtual Lab, we employ the Virtual Lab to tackle a
high-impact, real-world, open-ended scientific problem: designing new nanobodies that exhibit 
binding to the latest variant of SARS-CoV-2. There are myriad ways in which scientists could 
attempt to design such nanobodies, so the Virtual Lab must reason across multiple subfields of
biology and computer science to make a series of interrelated decisions about how best to
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design these nanobodies. Through a series of meetings, the Virtual Lab develops a novel 
computational nanobody design workflow that incorporates the protein language model ESM23, 
the protein folding model AlphaFold-Multimer24, and the computational biology software 
Rosetta25 to mutate existing nanobodies that bind to the receptor binding domain (RBD) of the 
spike protein of the original (Wuhan) strain of SARS-CoV-2 into nanobodies that bind to the 
latest variants of the virus, where an effective binder is lacking26. We experimentally validated 92
mutant nanobodies designed by the Virtual Lab and found that over 90% of the nanobodies 
were expressed and soluble, with two promising candidates showing unique binding profiles to 
the recent JN.1 and KP.3 spike RBD variants. This result demonstrates the capability of the 
Virtual Lab’s AI-human collaboration to perform complex, interdisciplinary science research that 
translates to validated results in the real world.

Fig. 1 | Virtual Lab architecture. a, The workflow for designing agents in the Virtual Lab. Each 
agent is specified with four criteria: title, expertise, goal, and role. The human researcher in the 
Virtual Lab specifies these criteria to define the Principal Investigator (PI) agent and the 
Scientific Critic agent. Then, given a short description of the project by the human researcher, 
the PI agent automatically creates several scientist agents to work on the project by specifying 
their title, expertise, goal, and role, using its own prompt as an example. b, The workflow for a 
team meeting in the Virtual Lab. The human researcher writes an agenda for the meeting 
specifying the topic of discussion. The PI agent begins the meeting by providing initial thoughts 
and agenda questions as a guide for the remaining agents. Then, over the course of N rounds 
of discussion, each scientist agent provides its response, followed by a critique by the Scientific
Critic agent, with the PI agent then synthesizing the discussion and asking follow-up questions. 
Finally, after the N rounds of discussion, the PI agent summarizes the discussion and provides
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an answer regarding the meeting agenda. c, The workflow for an individual meeting. The human
researcher writes an agenda for the meeting specifying the topic of discussion. Then, the 
scientist agent tasked with the individual meeting provides a response to the agenda, which is 
critiqued by the Scientific Critic. In each round, the scientist agent improves its answer based on 
feedback from the Scientific Critic. Finally, after the N rounds, the scientist agent provides its 
final, improved answer.

Virtual Lab architecture

Overview
We created the Virtual Lab as a collaboration between a human researcher and a team of large 
language model (LLM) agents to conduct sophisticated, interdisciplinary research (Fig. 1). The 
human researcher provides high-level guidance for the LLM agents while the LLM agents both 
decide on general research directions and design solutions to specific research problems. Each
agent is implemented by providing the underlying LLM (e.g., GPT-4o) with specific roles (e.g., a 
biologist agent) and domain-specific tools (e.g., AlphaFold). The Virtual Lab performs research 
in two primary ways: team meetings and individual meetings. In both cases, the human 
researcher provides an initial agenda to guide the discussion, and then the agents discuss how 
to address the agenda. In team meetings, all of the agents discuss a broad research question 
and work together to come up with an answer. In individual meetings, a single agent is given a 
more specific task to accomplish, such as writing code for a machine learning model, and the 
agent either works alone or in conjunction with another agent that provides critical feedback. 
Through a series of team meetings and individual meetings, the Virtual Lab tackles a complex 
research project.

Agents
Each LLM agent in the Virtual Lab is defined with a prompt that specifies four key criteria (Fig.
1a).

1. Title: The name of the agent.

2. Expertise: The scientific expertise the agent has.

3. Goal: The ultimate goal of the agent in the context of the research project.

4. Role: The specific role that the agent will play in the research project.

The agents of the Virtual Lab are led by an agent called the Principal Investigator (PI). The PI 
agent has expertise in artificial intelligence for scientific research with a goal of maximizing the 
scientific impact of research and with the role of guiding the research project (full prompt in the 
Appendix). The PI agent then automatically creates a set of scientist agents (e.g., a biologist or
a computer scientist) that are appropriate for the research project based on a short description
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of the project written by the human researcher. The PI defines these scientist agents by 
specifying each agent’s title, expertise, goal, and role, using its own prompt as an example.

In addition to the PI and scientist agents, we find it useful to create an explicit critic agent to 
catch errors and oversights from the other agents and to give critical feedback on answers 
provided by the other agents27. Therefore, a Scientific Critic agent (prompt in the Appendix) can
be added to any team meeting or individual meeting to provide critical feedback to the other 
agents.

Meetings
Interactions in the Virtual Lab happen through meetings, which can either be team meetings
with all the agents or individual meetings with a single agent (and optionally the critic agent).
Both types of meetings share the following set of inputs that structure the meeting.

1. Agenda: (required) A description of the scientific topic to be discussed during the
meeting.

2. Agenda questions: (optional) A set of questions that the agents must answer by the
end of the meeting.

3. Agenda rules: (optional) A set of rules that the agents must follow during the meeting.

4. Summaries: (optional) Agent-written summaries of previous meetings to provide
information about previous decisions.

5. Contexts: (optional) Additional information (e.g., scientific papers) for the agents to take
into consideration.

6. Rounds: (required) The number of rounds (typically N=3) of discussion among the
agents.

The team and individual meetings differ in terms of the agents that participate in the meeting
and the prompts that guide the flow of the meeting.

Team meeting
In team meetings, all the agents (PI agent, scientist agents, and Scientific Critic agent) 
participate in a conversation to address a broad research topic (Fig. 1b). First, the human 
researcher writes an agenda for the team meeting along with any applicable agenda questions 
and agenda rules. The team meeting then begins with an automatically constructed prompt (see
Appendix) then introduces the agents, agenda, agenda questions (if any), and agenda rules (if 
any) and describes the flow of the meeting, which involves multiple rounds of discussion. The PI
agent is prompted to start the discussion by providing their initial thoughts and any guiding 
questions that they want to ask the team. Then, each scientist agent and the Scientific Critic 
agent are prompted one-by-one (in an order set by the human researcher) to provide their 
thoughts on the ongoing discussion given everything that has been said by the other agents. At
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the end of a round of discussion, the PI agent synthesizes the points raised by each agent, 
makes decisions based on agent input, and asks follow-up questions to further the discussion. 
After N rounds of discussion (with N set by the human researcher), the PI agent summarizes the
discussion for future meetings, provides a recommendation regarding the agenda, and answers 
the agenda questions (if any). The human researcher in the Virtual Lab can then read just this 
final response by the PI agent, thus benefiting from the extensive discussions among the LLM 
agents while only needing to read the final short response to understand the decisions that were 
made.

Individual meeting
In individual meetings, a single agent tackles a specific task that falls within their area of 
expertise, optionally with critical feedback provided by the Scientific Critic agent (Fig. 1c). To 
start an individual meeting, the human researcher in the Virtual Lab selects the agent that will 
participate. An automatically constructed prompt (see Appendix) introduces the agenda, agenda
questions (if any), and agenda rules (if any) and then immediately asks the agent for a 
response. If the individual meeting has zero rounds (N=0), then the agent provides a response 
and the meeting ends. If the individual meeting includes one or more rounds (N≥1), then in each
round, the agent provides a response and then the Scientific Critic agent provides critical 
feedback to improve the agent’s response. After these rounds, the selected agent responds one 
more time to provide the final, improved answer.

Parallel meetings
To improve the expected quality and comprehensiveness of answers for a given meeting, the 
same meeting (same agents, same prompts) can be run multiple times in parallel to produce 
multiple answers (Supplementary Fig. 1). Then, an individual meeting with the appropriate agent
(i.e., the PI agent for team meetings or the relevant scientist agent for individual meetings) is run
to merge the summaries of each of the parallel meetings into a single answer that incorporates 
the best elements from each of the parallel meetings. To boost creativity while producing a 
consistently high-quality answer, each of the parallel meetings is run with a higher “creative” 
temperature of 0.8 while the single merge meeting is run with a lower “consistent” temperature 
of 0.228. Parallel meetings are similar in nature to the method of majority voting from multiple 
LLM queries29, but the Virtual Lab’s parallel meetings use a more complex and flexible merging 
of answers via a meeting with an LLM agent.
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Fig. 2 | Virtual Lab for nanobody design. The workflow used to apply the Virtual Lab to 
nanobody design for the latest variant of SARS-CoV-2. a, The workflow begins with the human 
researcher defining the Principal Investigator (PI) and Scientific Critic agents by specifying their 
title, expertise, goal, and role. Then, the PI agent creates a team of three scientist agents for the
project. b, A team meeting discusses the project specification, and the agents make decisions 
such as whether to design antibodies or nanobodies. c, In another team meeting, the agents 
suggest a set of computational tools for nanobody design, including ESM, AlphaFold-Multimer, 
and Rosetta. d, In a series of individual meetings, the Machine Learning Specialist and
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Computational Biologist, with helpful feedback from the Scientific Critic, write code and 
subsequently improve that code for the ESM, AlphaFold-Multimer, and Rosetta components of 
the nanobody design workflow. e, In an individual meeting, the PI agent decides the workflow for
using the three computational tools to design and select mutated nanobody candidates.

Virtual Lab for nanobody design

Overview
Given the flexibility of the Virtual Lab architecture, the Virtual Lab can be applied to a wide 
variety of interdisciplinary research projects by adapting the agents and the flow of team and 
individual meetings to the specific project’s goals and constraints. As a demonstration in the 
domain of biological research, we applied the Virtual Lab with GPT-4o30 powering the agents to
design antibodies or nanobodies that can bind to the spike protein of the KP.3 variant of
SARS-CoV-2, which was one of the latest variants at the time of this work26 (Fig. 2). This is an 
important and challenging problem because SARS-CoV-2 is rapidly evolving resistance to 
existing antibody/nanobody therapies, so quickly developing new antibody/nanobody therapies 
that overcome this resistance and bind to the latest variants is crucial to treating those who are 
infected31,32. The Virtual Lab tackles this problem by rapidly creating a computational workflow to
design antibodies or nanobodies for the KP.3 variant of SARS-CoV-2, which can then be 
experimentally validated by human biologists. The Virtual Lab created the computational 
antibody/nanobody design process in five phases.

1. Team selection: An individual meeting with the PI to define a set of scientist agents to
work on the project.

2. Project specification: A team meeting to specify the project direction by deciding on
key high-level details.

3. Tools selection: A team meeting to brainstorm machine learning and/or computational
tools for nanobody design.

4. Tools implementation: A series of individual meetings with different scientist agents to
implement three components of the nanobody design workflow—ESM,
AlphaFold-Multimer, and Rosetta.

5. Workflow design: An individual meeting with the PI to determine the workflow for
applying these computational tools.

These phases are discussed in more detail below, and complete prompts for each phase are in
the Appendix.

Team selection
First, Virtual Lab used an individual meeting with the PI agent (run five times in parallel followed
by a merge meeting) to create a set of scientist agents for the project. The meeting agenda
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contained a background prompt about antibody/nanobody design for the spike protein of the 
recent KP.3 SARS-CoV-2 variant and a request for the PI agent to select a team of three 
scientist agents for the project using the same agent structure (title, expertise, goal, role) as the
PI’s own definition. The PI decided to create an Immunologist, a Machine Learning Specialist, 
and a Computational Biologist.

Project specification
Next, in a team meeting, the full team of agents (PI, Immunologist, Machine Learning Specialist,
Computational Biologist, and Scientific Critic) discussed some of the specifics of the project 
beyond the general background prompt. This meeting’s agenda asked the agents to consider 
design choices such as whether to pursue antibodies or nanobodies and whether to modify 
existing antibodies/nanobodies or design new ones de novo. This team meeting was run in five 
parallel iterations followed by an individual merge meeting with the PI agent and the Scientific 
Critic to produce the best answer. Below are some of the PI’s final merged answers to the 
agenda questions.

1. Will you design standard antibodies or nanobodies?

Agent Answer: Nanobodies

Agent Justification: Nanobodies offer superior stability, tissue penetration, and ease of
production, making them ideal for targeting conserved and cryptic epitopes on the 
SARS-CoV-2 spike protein. This choice is consistently supported across all summaries, 
emphasizing their advantages in accessing unique epitopes and potential for
broad-spectrum activity.

2. Will you design antibodies/nanobodies de novo or will you modify existing
antibodies/nanobodies (choose only one)?

Agent Answer: Modify existing nanobodies

Agent Justification: Modifying existing nanobodies allows us to leverage established 
data, providing a quicker and more reliable path to developing broad-spectrum 
candidates. This approach is supported by the availability of structural data and known 
efficacy, which can accelerate the optimization process. This decision is consistently 
recommended across all summaries, highlighting the efficiency and feasibility of building
on known frameworks.

3. If modifying existing antibodies/nanobodies, which precise antibodies/nanobodies will
you modify (please list 3-4)?

Agent Answer: Ty1, H11-D4, Nb21, VHH-72

Agent Justification: These candidates have demonstrated strong neutralizing 
capabilities against SARS-CoV-2 and have available structural data, making them 
excellent candidates for modification. Ty1 and H11-D4, for example, have shown efficacy
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in neutralizing multiple variants, while Nb21 and VHH-72 offer unique binding properties
that can be optimized for broader cross-reactivity. Literature supports their efficacy, with 
studies indicating their ability to bind conserved epitopes and maintain stability under 
various conditions.

Given these decisions, the following phases proceeded with nanobody design by modifying the 
four nanobodies suggested by the Virtual Lab (Ty133, H11-D434, Nb2135, and VHH-7236), which 
are specific to the ancestral Wuhan spike protein, to increase their affinity to the spike protein of
the KP.3 variant of SARS-CoV-2. Furthermore, the Virtual Lab suggested prioritizing “enhancing
interactions with the receptor-binding domain of the spike protein by altering residues that 
contribute to binding affinity,” so the Virtual Lab subsequently focused on developing 
nanobodies that bind to the receptor binding domain (RBD) of the KP.3 spike protein.

Tools selection
After specifying the project direction, the Virtual Lab next needed to pick a set of computational 
tools to modify the selected nanobodies. To accomplish this, the Virtual Lab ran a team meeting 
asking the agents to list several machine learning and/or computational tools that could be used
for nanobody design, with emphasis on pre-trained models for simplicity. Similar to the project 
selection meeting, this team meeting was run with five parallel iterations followed by a merge 
meeting with the PI and Scientific Critic. The agents decided to use ESM23,
AlphaFold-Multimer24, and Rosetta25 as the components of its computational nanobody design
workflow.

Tools implementation
With the project well-specified and a set of computational nanobody tools chosen, the Virtual 
Lab then worked on implementing these tools for nanobody design. For each tool, the Virtual 
Lab selected the most appropriate scientist agent via an individual meeting with the PI. Then for 
each tool, the Virtual Lab ran an individual meeting with the selected scientist agent and the 
Scientific Critic (five parallel meetings followed by a merge meeting run by the scientist agent) to
implement the tool. These meetings included a set of agenda rules that specify how code 
should be written, e.g., with good documentation and without leaving functions undefined. 
These initial implementations contained small errors that needed correction, so the Virtual Lab 
then ran a single follow-up individual meeting (no parallelization or Scientific Critic) with the 
scientist agent to automatically fix all the errors that arose (see Appendix).

ESM usage
The Machine Learning Specialist agent was responsible for writing a Python script to identify the
most promising point mutations to a nanobody sequence based on the ESM log-likelihood ratio 
(LLR) of the mutant sequence compared to the input sequence. The agent wrote a 130-line 
Python script with three functions: a main function to run the script, a function to parse 
command-line arguments (e.g., the input nanobody sequence), and a function that uses a
pre-trained ESM model to compute log-likelihood ratios for point mutations.
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Notably, the Virtual Lab’s ESM nanobody mutation analysis is similar to the ESM-based 
antibody design process of Hie et al.37, but it differs in important ways. The Virtual Lab computes
the ESM LLR of mutant sequence 푥' with mutation at position 푖 compared to the input sequence

푥 as 퐿퐿푅(푥'|푥) = log( 푝(푥푖'|푥') ), where 푝(푥푖'|푥') is the ESM probability of the mutant amino acid 푥푖'

at position 푖 in the mutant sequence 푥' and 푝(푥푖|푥) is the ESM probability of the original amino 
acid 푥푖 at position 푖 in the input sequence 푥. In contrast, Hie et al. use 푝(푥푖'|푥) as the numerator 
in the ratio instead of 푝(푥푖'|푥'), thereby computing the probability of the mutant amino acid in the 
input sequence rather than the probability of the mutant amino acid in the mutant sequence. 
Additionally, the Virtual Lab only uses the ESM-1b38 model while Hie et al. use a consensus of 
ESM-1b and five ESM-1v39 models.

AlphaFold-Multimer usage
To use AlphaFold-Multimer, the Virtual Lab asked the Computational Biologist agent to write a
Python script that processes a predicted nanobody-spike complex structure from
AlphaFold-Multimer and outputs the interface pLDDT (ipLDDT), which is a measure of the 
confidence of the binding interface between the nanobody and the spike protein that has 
previously been shown to correlate with antibody-antigen binding affinity40. Computing the 
ipLDDT values across multiple proposed nanobodies requires reading a PDB file for each 
predicted nanobody-spike complex and writing as output a single CSV file with the ipLDDT from
every complex. The Computational Biologist wrote a 144-line Python script with five functions: a
main function to run the whole script, a function to check whether a PDB file contains a protein 
structure in the correct format, a function to identify the residues in the interface between the 
two proteins, a function to calculate the ipLDDT, and a function to run the ipLDDT calculation on
every PDB file in a directory and save the results to a single CSV file.

Rosetta usage
The Computational Biologist was also responsible for using Rosetta to calculate 
nanobody-spike binding energies as a metric for measuring the quality of each mutated
nanobody. Given a PDB file with a predicted nanobody-spike structure from AlphaFold-Multimer,
the Computational Biologist was asked to write a RosettaScripts XML file to load the PDB file, 
calculate the binding energy, and save the binding energy to a Rosetta score file. Additionally, 
the agent was asked to write a Python script that loads all the score files in a directory and 
saves a CSV file with the binding energy of every nanobody-spike complex.

The Computational Biologist wrote a 30-line RosettaScripts XML file that first relaxes the 
nanobody-spike structure and then computes the binding energy (dG-separated in Rosetta 
terminology) of the interface using the REF15 scoring function. The Computational Biologist 
then wrote a 71-line Python script with two functions: a main function to run the whole script and
a function to extract the binding energy score from a given Rosetta score file.

https://doi.org/10.1101/2024.11.11.623004
https://doi.org/10.1101/2024.11.11.623004
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


bioRxiv preprint doi: https://doi.org/10.1101/2024.11.11.623004; this version posted November 12, 2024. The copyright holder for this preprint 
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

available under aCC-BY-NC 4.0 International license.

Workflow design
Finally, the Virtual Lab ran an individual meeting with the PI agent to design a workflow that 
uses ESM, AlphaFold-Multimer, and Rosetta to design nanobodies. For each of the four starting
nanobody candidates, the PI agent decided to run ESM to evaluate all possible point mutations 
and then to select the top 20 mutations by ESM log-likelihood ratio. Each of these 20 mutant 
sequences would then be evaluated by both AlphaFold-Multimer and Rosetta. These 20 
sequences would then be ranked and the top five would be selected using the following 
weighted score designed by the PI agent:

WS = 0.2 * (ESM LLR) + 0.5 * (AF ipLDDT) - 0.3 * (RS dG)

where WS is the weighted score, ESM LLR is the ESM log-likelihood ratio between the mutated
sequence and the input sequence, AF ipLDDT is the AlphaFold-Multimer ipLDDT binding 
interface confidence, and RS dG is the Rosetta dG-separated binding energy value. The PI 
correctly uses a negative weight for the Rosetta value since a more negative binding energy is 
better. The top five sequences according to WS then serve as the starting sequences for the 
next round of mutation, with 4 rounds of mutation in total depending on time constraints and 
improvements in the WS across rounds.
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Fig. 3 | Nb21 nanobody analysis. a, Each round of nanobody design begins with a nanobody
sequence. ESM computes the log-likelihood ratio (ESM LLR) of every single point mutation to 
the input sequence. The top 20 mutant sequences by ESM LLR are run through
AlphaFold-Multimer to predict the structure of the complex of nanobody and SARS-CoV-2 spike 
protein, and the interface pLDDT (AF ipLDDT) confidence value is computed. This complex is 
then passed to Rosetta, which relaxes the structure and computes a binding energy (RS dG). 
These three scores are combined into a weighted score (WS) that is used to select the top five 
mutant nanobodies for the next round of optimization. b-d, Evolution of mutant nanobody scores
across four rounds of optimization, with improvements in ESM LLR, AF ipLDDT, and RS dG 
across the rounds. b, The distribution of ESM LLR values for proposed Nb21 mutant 
nanobodies across each round of optimization, with ESM LLR values computed relative to the 
input nanobody sequence from the previous round. Shown are the ESM LLR values of the top 
20 proposed mutant nanobodies per input nanobody, i.e., the proposed mutant nanobodies that 
proceed to AlphaFold-Multimer and Rosetta analysis. c, The AF ipLDDT and the RS dG of the 
top five proposed nanobodies, selected by WS, at the end of each round of optimization. d, The 
distribution of WS values of the top five proposed nanobodies at the end of each round of 
optimization. e-g, Analysis of the final set of 23 mutant nanobodies selected across all rounds of 
optimization, which exhibit superior ESM LRRWT, AF ipLDDT, and RS dG values compared to 
the wild-type nanobody. e, The distribution of ESM LLRWT values (ESM LLR of the mutant 
sequence compared to the wild-type sequence) for the selected nanobodies and the wild-type 
nanobody. f, The AF ipLDDT and RS dG values of the selected nanobodies and the wild-type 
nanobody. g, The structure (predicted by AlphaFold-Multimer followed by Rosetta relaxation) of 
the receptor binding domain of the spike protein of the KP.3 variant of SARS-CoV-2 (cyan) and 
the proposed nanobody mutant Nb21 I77V-L59E-Q87A-R37Q (green). Side chains are shown 
for all residues within 4Å of the opposite chain (i.e., interface residues). Mutant residues in the 
proposed nanobody are shown in pink.

Results

Nanobody design
The Virtual Lab ran the nanobody design computational workflow (Fig. 3a) to design improved 
nanobody candidates for the KP.3 variant of SARS-CoV-2, which was one of the latest variants 
at the time of this work. The workflow was run independently for each of the four nanobodies 
suggested by the agents: Ty1, H11-D4, Nb21, and VHH-72. Below, we describe the workflow in
terms of a single starting nanobody for simplicity.

The Virtual Lab workflow began with “round 0,” which evaluated the wild-type nanobody 
sequence without introducing any mutations. ESM LLR was assigned to zero since the wild-type
nanobody sequence was unmodified. Then, the Virtual Lab ran AlphaFold-Multimer (via 
LocalColabFold41 version 1.5.5) on the nanobody sequence and the sequence of the receptor 
binding domain (RBD) of the KP.3 spike protein to produce a predicted structure of the complex. 
Next, the Virtual Lab computed the AF ipLDDT as a measure of confidence in the binding 
interface of the complex. Then, the Virtual Lab ran Rosetta to relax the complex and compute
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the RS dG value as an estimate of the binding energy. Finally, the Virtual Lab computed the
weighted score (WS) of the wild-type nanobody.

In round 1, the Virtual Lab ran ESM to calculate the ESM LLR of every possible single point 
mutation to the wild-type nanobody. The top 20 mutated sequences by ESM LRR were retained.
For each of these 20 mutated sequences, AlphaFold-Multimer and Rosetta were applied in the 
same way as for the wild-type sequence. The Virtual Lab then computed the WS for each of the 
20 mutated sequences and selected the top five sequences for the next round. In rounds 2-4, 
the Virtual Lab applied the same procedure but now starting with five input sequences to the 
ESM LLR script, resulting in 100 top mutated sequences (20 proposed mutant sequences for 
each of the five input sequences). These sequences were analyzed by AlphaFold-Multimer and 
Rosetta, and the top five of these 100 sequences were selected at the end of each round by 
their WS.

After running all four rounds of mutation, the Virtual Lab needed to select the best mutated 
nanobody sequences across all four rounds for experimental validation. Doing so required using
a slight variant of the weighted score (WS). In each round, the WS used the ESM LLR 
calculated as a ratio between the proposed mutant sequence and the input sequence for that 
round (i.e., an output sequence from the previous round), which differ by a single mutation. 
However, in order to fairly select the best sequences across different rounds with different 
numbers of mutations, an alternate ESM log-likelihood ratio, which we call the ESM LLRWT, was 
computed between each proposed mutant sequence (with one to four mutations) and the
wild-type sequence. The Virtual Lab then scored all mutant nanobody sequences using the 
WSWT, which is the weighted score calculated using the ESM LLRWT in place of the ESM LLR. 
The top 23 mutant sequences were selected for experimental validation along with the wild-type
sequence as a point of reference.

Table 1 | Nanobody score analysis. The scores of each wild-type nanobody and examples of
the mutant nanobodies that were selected for experimental validation. ESM LLRWT: ESM
log-likelihood ratio between the mutant nanobody sequence and the wild-type sequence. AF 
ipLDDT: AlphaFold-Multimer interface pLDDT for the nanobody-spike complex. RS dG: Rosetta 
dG-separated binding energy value. WSWT: Weighted score combining ESM LLRWT, AF ipLDDT,
and RS dG.

Name

Ty1

Ty1
V32F-G59D-N54
S-F32S

H11-D4

H11-D4
A14P-Y88V-K74

ESM LLRWT

0.00

3.51

0.00

10.67

AF ipLDDT RS dG WSWT

71.83 -41.51 48.36

86.06 -28.69 52.34

68.18 -38.93 45.77

84.02 -35.04 54.66
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T-R27L

Nb21 0.00

Nb21 7.47
I77V-L59E-Q87
A-R37Q

VHH-72 0.00

VHH-72 8.82
R27Y-E31D-F37
V-D89E

72.11 -43.32 49.05

80.41 -51.56 57.17

66.46 -20.90 39.50

69.51 -53.76 52.65

Computational nanobody analysis
The successive rounds of optimization improved the quality of the proposed mutant nanobody 
sequences according to the three metrics of ESM LLR, AF ipLDDT, and RS dG. Fig. 3b-g shows
relevant metrics for Nb21, while results are similar for Ty1 (Supplementary Fig. 2), H11-D4 
(Supplementary Fig. 3), and VHH-72 (Supplementary Fig. 4). Table 1 shows scores for the
wild-type sequence and some of the mutant sequences that were selected for experimental
validation.

In each round, the top sequences selected by ESM LLR had log-likelihood ratios of roughly 1-8,
indicating that each subsequent round of mutation improved the overall quality of the nanobody 
compared to the input sequence from the previous round (Fig. 3b). This is according to ESM’s 
internal understanding of nanobody likelihood, which does not take the antigen (spike protein) 
into account but does understand overall nanobody quality. The top mutant nanobody 
sequences selected by ESM LLR in each round generally had improved structural complexes 
with the KP.3 spike protein based on improved AF ipLDDT, improved RS dG, or both (Fig. 3c). 
The WS values of the top five sequences at the end of each round improved (Fig. 3d), even 
when using the ESM LLR instead of the ESM LLRWT that corrects for the effect of multiple 
mutations and not just the most recent mutation.

After correction, the ESM LLRWT for the final selected 23 sequences showed a large 
improvement over the wild-type sequence (Fig. 3e). These selected sequences also had 
improved AF ipLDDT and RS dG scores compared to the wild-type (Fig. 3f). An example of the
AlphaFold-Multimer predicted structure of a top scoring mutant nanobody is shown in Fig. 3g. 
Notably, the final set of 23 selected nanobody sequences includes sequences with different 
numbers of mutations (i.e., from different rounds) and with a different balance of ESM LLRWT, 
AF ipLDDT, and RS dG values, allowing for a diversity of potential improvements to the
wild-type nanobody.

Applying this workflow to each of the four starting nanobodies resulted in 92 final selected 
sequences (23 per starting nanobody). All 92 mutant nanobodies had a positive ESM LLR,
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indicating that ESM preferred the mutant over the wildtype. Among the 92 mutant nanobodies, 
78 (85%) had an AF ipLDDT greater than their respective wildtype nanobody, and 32 (35%) had
an AF ipLDDT ≥ 80, which is in line with the AF ipLDDT scores of high accuracy
AlphaFold-Multimer antibody-antigen structural models in prior work40. Furthermore, 60 (65%)
had an RS dG less (better) than their respective wildtype nanobody, and 23 (25%) of the 92 
mutants had an RS dG ≤ -50, which is in line with strong Rosetta binding energy values of 
nanobodies or antibodies in complex with the SARS-CoV-2 receptor binding domain in prior 
work25,42.

Fig. 4 | Workflow for nanobody experimental validation. The four categories of experiments 
(nanobody expression, SARS-CoV-2 spike RBD expression, antigen array printing, and 
multiplexed ELISA) are enclosed in boxes. The ribbons representation of a nanobody (blue) and
the RBD (purple) were rendered with ChimeraX58 from PDB accession numbers 6XZN and 
6M0J, respectively. Unique RBD and control proteins of the array are shown as colored spots 
with fiducial markers shown as black spots.
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Fig. 5 | Experimental validation of Virtual Lab nanobodies. a, Histogram of nanobody 
expression levels. A 5-point scale (1 = very low, 2 = low, 3 = average, 4 = high, 5 = very high) 
was used to classify the amount of nanobody in the soluble periplasmic extract. SDS-PAGE 
data used for the graph is shown in Supplementary Fig. 5. b, ELISA binding profiles of 
nanobodies to a panel of antigens. For each SARS-CoV-2 RBD protein and BSA (x-axis), 
individual spots represent the ELISA binding intensity (y-axis) of each nanobody. Unmutated 
nanobodies (H11-D4, Nb21, Ty1, and VHH-72) are shown in black and nanobodies exhibiting 
high non-specific binding are shown in shades of red (light pink, pink, and magenta). The Nb21
mutant (I77V-L59E-Q87A-R37Q) and the Ty1 mutant (V32F-G59D-N54S-F32S) that show 
binding to JN.1 are shown in green. Data shown are the mean of two measurements at a 
nanobody concentration of 0.5x. c, Comparison of ELISA binding of mutants and their 
unmutated sequences. Nb21 mutant I77V-L59E-Q87A-R37Q and Ty1 mutant
V32F-G59D-N54S-F32S are shown as filled circles and unmutated Nb21 and Ty1 nanobodies 
are shown as open circles. ELISA binding intensity (y-axis) to Wuhan RBD, JN.1 RBD, and BSA
are shown in blue, red, and gray, respectively. Data shown are the mean of two measurements 
at a 12-point serial dilution of nanobody. d, Location of mutant nanobody mutations. Models of 
the Nb21 mutant I77V-L59E-Q87A-R37Q and the Ty1 mutant V32F-G59D-N54S-F32S, 
generated by the Virtual Lab using Alphafold-Multimer, are shown in ribbons representation 
(blue), with the CDR loops shown in orange. Mutations introduced by the Virtual Lab are shown 
in pink and in red circles. Structure images were generated using ChimeraX58.

Nanobody experimental validation
To validate the nanobodies designed by the Virtual Lab, we conducted a set of experiments to
measure their binding to a panel of spike receptor binding domain (RBD) proteins (Fig. 4). We
first overexpressed each nanobody in E. coli, followed by isolation of soluble protein from the
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periplasm. The designed nanobodies show excellent expression, with 38% (35 of 92) of the 
designs showing high to very high expression levels (Fig. 5a, Supplementary Fig. 5) and only 
6.5% (6 of 92) of the designs showing very little to no soluble expression. Thus, the mutations
proposed by the Virtual Lab are well tolerated and do not cause large-scale misfolding or 
aggregation of the nanobodies.

To determine if the 92 mutant nanobodies—23 each for Ty1, H11-D4, Nb21, and VHH-72—and
the four wild-type nanobodies could bind to the SARS-CoV-2 KP.3 spike RBD, we generated a 
spike RBD array that included the KP.3 RBD protein, its closely related parental strain (JN.1 
RBD), a closely related variant (KP.2.3 RBD), an early Omicron variant (BA.2 RBD), and the 
ancestral strain (Wuhan RBD), which all four wild-type nanobodies show specificity for.

Using this RBD array, we first profiled the binding of all 96 nanobodies by indirect ELISA to each 
antigen at a single nanobody dilution (0.5X) (Fig. 5b). For the H11-D4 and Nb21 series, binding 
to Wuhan RBD is overwhelmingly retained in 96% of mutant nanobodies (44 of 46). Three 
mutants in the H11-D4 series exhibit high non-specific binding to BSA and all of the RBDs (Fig. 
5b), possibly owing to the Virtual Lab inadvertently introducing an R27C mutation, which may be 
leading to disulfide crosslinking. In contrast to the H11-D4 and Nb21 mutants, the Ty1 mutants, 
overall, exhibit poor binding to Wuhan RBD (10 of 23 mutants). If the V32 mutation of Ty1, 
selected by the Virtual Lab as the first residue to mutate for each mutant, is not well tolerated, 
this could result in the observed poor binding to Wuhan RBD compared to the H11-D4 and Nb21
mutants. Over half of the VHH-72 mutants (13 of 22) show binding to Wuhan RBD at levels 
similar to that observed for the unmutated VHH-72 nanobody. Thus, the Virtual Lab designs are, 
overall, well tolerated with respect to preserving their original specificity to Wuhan RBD.

Of the 92 Virtual Lab designed nanobodies, two show promising binding profiles beyond Wuhan 
RBD. The first derived from Nb21, I77V-L59E-Q87A-R37Q (i.e., Nb21 with the mutations I77V, 
L59E, Q87A, and R37Q), shows positive ELISA binding to JN.1 RBD (Fig. 5b-c) at nanobody 
dilutions up to 10-6. Maximal binding of this nanobody to JN.1 RBD is less than that to Wuhan 
RBD, with a weaker EC50 (~10-5 vs ~10-6) showing that this new binding to JN.1 RBD may be 
moderate. The wild-type Nb21 shows very low ELISA binding to JN.1 RBD, suggesting that the 
Virtual Lab mutant has improved upon this existing very weak binding. Interestingly, this mutant 
also shows some binding to KP.3 RBD (average intensity = 3.5) compared to the other Nb21 
mutants (average intensity = 0.06 ± 0.09, n = 22) and the unmutated sequence (average 
intensity = 0.1) (Fig. 5b). We further confirmed this KP.3 binding enrichment in separate ELISA 
experiments. The R37Q mutation in this mutant may be important for this binding since the triple
mutant nanobody without R37Q (i.e., I77V-L59E-Q87A) and three nanobodies with the same 
triple mutation but a different fourth mutation (I99R, Q87A, or R43L) do not bind to JN.1 or KP.3. 
Additionally, the L59E mutation may contribute to JN.1 RBD and KP.3 RBD binding because the 
JN.1 RBD and the KP.3 RBD have mutations that introduce positive charges relative to the 
Wuhan RBD (e.g., E484K) while the L59E and R37Q mutations in the nanobody introduce a 
negative charge (and reduce positive charge), which could lead to beneficial electrostatic forces 
or hydrogen bonding (Fig. 5d).
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Notably, a Ty1 mutant nanobody (V32F-G59D-N54S-F32S) not only improved binding to Wuhan 
RBD, as measured by ELISA, but also gained moderate binding to JN.1 RBD (Fig. 5b-c). In 
contrast, we see no evidence for even low levels of unmutated Ty1 nanobody binding to JN.1 
RBD. Interestingly, the Virtual Lab initially introduced a V32F mutation in the first round and then 
later followed up with an F32S mutation in the fourth round, resulting in a V32S mutation in the 
final mutant nanobody. Every one of the 23 mutant nanobodies introduced a mutation at position
32 in the first round (either V32F or V32C), but only three of the 23 mutants later modified 
position 32 again, two introducing F32Y and this mutant introducing F32S. This indicates that 
position 32, which is predicted to be near the binding domain, may be particularly important for 
Ty1 but may require a very specific mutation to induce binding to JN.1. Similar to that observed 
for the Nb21 mutant that binds to JN.1 RBD, this Ty1 mutant also introduces a negative charge 
(G59D). All the mutations of this mutant nanobody are in the CDR loops of the nanobody (Fig. 
5d).

Across the mutant nanobodies, the preserved and improved binding affinities for the Wuhan 
RBD (and JN.1 RBD for Nb21) relative to their respective wild-type forms is likely due to the 
effect of the Virtual Lab’s use of ESM log-likelihoods, which are agnostic to the antigen but 
select for evolutionarily favorable nanobody sequences with improved fitness37. In contrast, the
Ty1 mutant that gained binding affinity for the JN.1 RBD, which is the close ancestor of KP.3 
sharing 99.1% identity in the RBD43 (220 of 222 residues), and the Nb21 mutant that gained 
binding affinity for the KP.3 RBD and improved binding affinity for the JN.1 RBD may 
demonstrate the effect of the AlphaFold-Multimer and Rosetta scoring, which explicitly aim to 
predict binding affinity of the mutant antibody to the KP.3 RBD, and thus by extension the 
closely related JN.1 RBD. Through the use of these three tools, the Virtual Lab designed a set 
of promising nanobody candidates with potential for further development.
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Fig. 6 | Virtual Lab discussion analysis. a, Excerpts from a Virtual Lab team meeting 
discussing the nanobody project specification. Each LLM agent addresses the agenda from its 
own perspective based on its title, expertise, goal, and role, leading to a comprehensive and 
interdisciplinary discussion of the agenda. b, The number of words (space-separated tokens) 
written by the Virtual Lab (human researcher and each LLM agent) across all phases of the 
nanobody design process. c, The number of words written by the Virtual Lab in the project 
specification phase. d, The number of words written by the Virtual Lab in the ESM 
implementation phase. e, The number of words written by the Virtual Lab in the workflow design
phase.

Analyses of Virtual Lab interactions
The Virtual Lab proceeded rapidly through the phases of the nanobody design workflow, with 
each meeting (or a set of parallel meetings) only taking the agents about 5-10 minutes. 
Furthermore, the Virtual Lab was able to conduct extensive discussions with relatively minimal 
input from the human researcher, and the individual identities of the agents contributed to a 
comprehensive, interdisciplinary discussion with each agent providing perspective based on its 
specific background (Fig. 6a). For example, the Immunologist discusses the benefits of 
modifying existing nanobodies instead of designing nanobodies de novo, the Machine Learning
Specialist explains how nanobody size can affect machine learning model complexity, the
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Computational Biologist explores computational techniques like molecular docking, and the
Scientific Critic raises questions about over-reliance on predictions and bias in datasets.

One of the benefits of the Virtual Lab is that relatively limited human input is required. Across all
the phases of the workflow, the human researcher wrote only 1,596 words (defined as
space-separated tokens) in total, including some copy-pasted text from a Rosetta score file, 
which is just 1.3% of all the words written by the Virtual Lab (Fig. 6b). In contrast, the LLM 
agents wrote 122,462 words (98.7% of all words), including all the Python scripts and one XML
script that were written from scratch by the agents.

The meetings in the nanobody design workflow reveal interesting social dynamics among the 
Virtual Lab agents. For example, in the project specification team meeting, the PI agent wrote 
the most (36.4% of the words) followed by the Scientific Critic (21.0%) and then the three 
scientist agents—the Computational Biologist (14.8%), the Machine Learning Specialist 
(14.5%), and the Immunologist (12.8%)—with the human researcher only writing 0.5% of the 
words (Fig. 6c). The distribution is similar for the tools selection team meeting (Supplementary 
Fig. 6a). This order is reasonable given that the PI not only has to synthesize the agent 
responses after each round of discussion to guide the next round but also has to initiate the 
meeting and write a summary at the end. The Scientific Critic likely writes more than the 
scientist agents since the Scientific Critic must address the limitations of every agents’ response
while each scientist agent is only concerned with providing its own opinions. In the individual 
meetings with both a scientist agent and the Scientific Critic, the scientist agent tends to 
dominate the discussion, producing around 66% of the words compared to around 33% for the 
Scientific Critic and around 1% for the human researcher (Fig. 6d, Supplementary Fig. 6b-c). In 
individual meetings with an agent without the Scientific Critic, which have no back-and-forth 
discussion, the agent writes more than 80% of the words compared to less than 20% written by 
the human researcher (Fig. 6e, Supplementary Fig. 6d-e).

The use of parallel meetings was notable as it led to answers with improved consistency and
quality. For example, the five parallel individual meetings with the PI agent produced the 
following five sets of scientist agents.

1. Computational Biologist, AI/ML Specialist, Immunologist
2. Computational Biologist, Immunologist, Machine Learning Specialist
3. Computational Biologist, Virologist, Antibody Engineer
4. Immunologist, Structural Biologist, Machine Learning Specialist
5. Computational Biologist, Structural Biologist, Immunologist

Upon merging these answers, the PI chose to define a Computational Biologist, a Machine 
Learning Specialist, and an Immunologist. This roughly aligns with the majority vote of the five 
parallel meetings, resulting in a more consistent answer than any one of the meetings. 
Furthermore, the merge meeting aimed to select the best form of each agent. For example, the 
final merged Machine Learning Specialist’s expertise is “developing algorithms for protein-ligand
interactions and optimization,” which is the same as that of the Machine Learning Specialist in
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the second of five meetings and is superior to the more vague expertise of “machine learning 
algorithms and data analysis” from the AI/ML Specialist in the first meeting and “applying AI and
ML models to biological data” from the Machine Learning Specialist in the fourth meeting.

Including the Scientific Critic in team and individual meetings often led to improved answers 
thanks to the Scientific Critic’s helpful critiques. As an example, in an individual meeting with the
Machine Learning Specialist and the Scientific Critic to write ESM code, the Scientific Critic 
explained several important ways to improve the code. In the first round of discussion, the 
Scientific Critic noted “the use of random numbers as a placeholder for ESM log-likelihoods” 
and said that “the agenda specifies using ‘ESM amino acid log-likelihoods,’ yet this critical 
component is not implemented.” In response, the Machine Learning Specialist rewrote the code 
with a new function called get_esm_log_likelihoods with documentation explaining how 
ESM could be used to calculate log-likelihoods. While the new code still computes random
log-likelihoods as a placeholder, this change represents a step in the right direction thanks to
the Scientific Critic. In a parallel meeting, the Machine Learning Specialist wrote code that 
correctly loads and runs an ESM model, and this code was used in the final merged answer 
(Box 1), again demonstrating the benefit of multiple parallel meetings to arrive at an optimal 
answer.
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Box 1 | Virtual Lab ESM Code. A function from code written by the Machine Learning 
Specialist Agent (with feedback from the Scientific Critic Agent) that uses ESM to compute the
log-likelihood ratio of point mutations in a nanobody sequence.
def compute_log_likelihood_ratios(seq: str, model, tokenizer) -> List[Tuple[int, 
str, str, float]]:

"""Computes log-likelihood ratios for each possible point mutation in the 
sequence.

Args:
seq (str): The input nanobody sequence.
model: The ESM model for masked language modeling. 
tokenizer: Tokenizer corresponding to the ESM model.

Returns:
List[Tuple[int, str, str, float]]: A list of tuples containing position, 

original amino acid, mutated amino acid, and log-likelihood ratio.
""" 
try:

encoded_input = tokenizer(seq, return_tensors='pt', 
add_special_tokens=True)

original_output = model(**encoded_input)

log_likelihoods = []
amino_acids = 'ACDEFGHIKLMNPQRSTVWY'

for pos in range(1, len(seq) + 1): # Skip [CLS] token which is at index 0 
for aa in amino_acids:

if seq[pos - 1] == aa: 
continue

mutated_sequence = seq[:pos - 1] + aa + seq[pos:]
mutated_input = tokenizer(mutated_sequence, return_tensors='pt', 

add_special_tokens=True)
mutated_output = model(**mutated_input)

original_ll = original_output.logits[0, pos, 
tokenizer.convert_tokens_to_ids(seq[pos-1])].item()

mutated_ll = mutated_output.logits[0, pos, 
tokenizer.convert_tokens_to_ids(aa)].item()

ll_ratio = mutated_ll - original_ll

log_likelihoods.append((pos, seq[pos - 1], aa, ll_ratio))

return sorted(log_likelihoods, key=lambda x: x[3], reverse=True) 
except Exception as e:

print(f"An error occurred during computation: {e}. Please ensure your 
sequence is valid and model is correctly loaded.")

return []
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Discussion
The Virtual Lab achieved its goal of engaging in sophisticated, interdisciplinary science 
research, as demonstrated by its design of nanobodies with experimentally validated, diverse 
binding profiles across multiple strains of SARS-CoV-2. The human researcher and team of LLM
agents in the Virtual Lab worked together through a series of meetings to rapidly build a 
complex nanobody design pipeline that incorporates state-of-the-art machine learning and 
computational biology tools. Building this pipeline required knowledge of multiple areas of 
science from immunology to protein folding to machine learning and required making decisions 
that involved reasoning across many aspects of the project simultaneously. The Virtual Lab 
successfully built and ran this nanobody design pipeline, with 92 nanobody candidates 
experimentally validated by human researchers. These 92 nanobodies—efficiently selected from
the trillions of nanobody sequences with one to four mutations—include exciting candidates for 
further development, such as an Nb21 mutant that enhances binding to the JN.1 RBD and gains 
binding to the KP.3 RBD and a Ty1 mutant that gains binding to the JN.1 RBD. Thus, the Virtual 
Lab shows how human researchers can partner with LLM agents to rapidly achieve promising 
scientific results that can streamline further experiments.

Previous work applying AI to science has generally treated AI methods as tools used by human 
researchers, such as AlphaFold to predict protein structures4 or LLMs to answer scientific 
questions11–16, with the human researcher making all the high-level research decisions and 
design choices. In contrast, the Virtual Lab represents a shift from AI as a tool to AI as a partner 
for science research, with human researchers working alongside LLM agents to design and run 
a research project. The strength of the Virtual Lab comes from its multi-agent21,44–46 architecture, 
which empowers an AI-human scientific collaboration via a series of meetings between a human
researcher and a team of interdisciplinary LLM agents. The different backgrounds of the various 
scientist agents leads to discussions that approach complicated scientific questions from 
multiple angles, thereby contributing to comprehensive answers. Furthermore, the PI agent 
helps guide the discussions, make key decisions, and summarize conversations for the human 
researcher, while the Scientific Critic agent pushes the other agents to improve their answers to 
maximize the quality of their science. The inclusion of the human researcher is also vital as it 
enables the human to provide high-level guidance where the agents lack relevant context, such 
as choosing readily available computational tools and introducing constraints in experimental 
validation. The team and individual meetings provide two distinct forums for discussion in the 
Virtual Lab, enabling high-level conversations about research directions in the team meetings 
and low-level implementation of specific solutions in the individual meetings. Throughout these 
meetings, the extended conversations between interdisciplinary agents extracts knowledge and 
reasoning abilities from the underlying LLM in a similar way to chain-of-thought prompting47 but 
with the added benefit of different agent perspectives and a human-in-the-loop to guide the 
conversations.

While the Virtual Lab architecture provides useful structure for scientific discussions between 
the human researcher and the LLM agents, the Virtual Lab has several limitations that are 
inherent in the current generation of LLMs. For example, since LLMs are only trained on data up
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to a certain date cutoff, the agents may not be aware of the most up-to-date scientific literature 
and code48. In our application of the Virtual Lab, this meant that the agents did not suggest the 
very latest machine learning tools (e.g., AlphaFold 349 instead of AlphaFold-Multimer24), and 
they wrote code that assumed old function and model names that were sometimes incompatible
with the latest package versions. However, these issues could be fixed by providing the agents 
with relevant information and documentation, for example through retrieval-augmented 
generation50,51. In fact, after the agents wrote initial scripts for ESM, AlphaFold-Multimer, and 
Rosetta, the human researcher in the Virtual Lab noted several such mistakes and the agents 
made corrections that fixed the code. Furthermore, beyond the challenge of LLMs using these 
tools correctly, the tools themselves (e.g., AlphaFold) are imperfect40, so even correct usage 
does not guarantee accurate results. However, as the tools improve, the Virtual Lab will directly 
benefit from their enhanced performance.

Another challenge faced by the Virtual Lab, which is also an inherent LLM limitation, is the need 
for prompt engineering to obtain useful answers from the LLM agents52. Without appropriate 
guidance, the LLM agents can give vague answers. For example, the agents sometimes prefer 
not to make any hard decisions unless prompted. When the agents were asked to decide 
whether to modify existing nanobodies or design nanobodies de novo, they frequently said to do
both until they were specifically asked to “choose only one.” This means that the human 
researcher may have to iterate on a meeting agenda several times before the Virtual Lab 
provides a desirable response. Even so, the role of prompt engineering in the Virtual Lab may 
shrink as the underlying LLMs are further improved.

Although we applied the Virtual Lab to nanobody design here, the Virtual Lab architecture of 
LLM agents and meetings is agnostic to specific research questions or scientific domains. The 
Virtual Lab architecture can be implemented with any set of scientist agents and any human 
researcher, and the conversations in the meetings will naturally adapt based on the human 
researcher’s agenda and the backgrounds of the agents. Even the underlying LLM that powers 
the agents could be exchanged, meaning the Virtual Lab can improve its scientific abilities as 
LLMs grow more capable. We envision the Virtual Lab as a powerful framework for engaging in
interdisciplinary science research with the help of LLMs.
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Code and data availability
Code for the Virtual Lab, full discussions by the agents, and computational scores for the
designed nanobodies are available at https://github.com/zou-group/virtual_lab.
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Appendix

Supplementary figures

Supplementary Fig. 1 | Virtual Lab Parallel Meetings. The workflow for parallel meetings in 
the Virtual Lab. A set of meetings (team or individual) is run with the same agenda and agents 
but with different randomness in the LLM underlying the agents (with a high LLM temperature to
encourage creativity across meetings). The answer from each parallel meeting is then provided 
to an agent in an individual meeting (with a low LLM temperature for consistency), and this 
agent is asked to merge the best components of the answers from each parallel meeting into a 
single optimal answer.
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Supplementary Fig. 2 | Ty1 nanobody analysis. a-c, Evolution of mutant nanobody scores 
across four rounds of optimization, with improvements in ESM LLR, AF ipLDDT, and RS dG 
across the rounds. a, The distribution of ESM LLR values for proposed Ty1 mutant nanobodies 
across each round of optimization, with ESM LLR values computed relative to the input 
nanobody sequence from the previous round. Shown are the ESM LLR values of the top 20 
proposed mutant nanobodies per input nanobody, i.e., the proposed mutant nanobodies that 
proceed to AlphaFold-Multimer and Rosetta analysis. b, The AF ipLDDT and the RS dG of the 
top five proposed nanobodies, selected by WS, at the end of each round of optimization. c, The 
distribution of WS values of the top five proposed nanobodies at the end of each round of 
optimization. d-f, Analysis of the final set of 23 mutant nanobodies selected across all rounds of
optimization, which exhibit superior ESM LRRWT, AF ipLDDT, and RS dG values compared to 
the wild-type nanobody. d, The distribution of ESM LLRWT values (ESM LLR of the mutant 
sequence compared to the wild-type sequence) for the selected nanobodies and the wild-type 
nanobody. e, The AF ipLDDT and RS dG values of the selected nanobodies and the wild-type 
nanobody. f, The structure (predicted by AlphaFold-Multimer followed by Rosetta relaxation) of 
the receptor binding domain of the spike protein of the KP.3 variant of SARS-CoV-2 (cyan) and 
the proposed nanobody mutant Ty1 V32F-G59D-N54S-F32S (green). Side chains are shown 
for all residues within 4Å of the opposite chain (i.e., interface residues). Mutant residues in the 
proposed nanobody are shown in pink.
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Supplementary Fig. 3 | H11-D4 nanobody analysis. a-c, Evolution of mutant nanobody 
scores across four rounds of optimization, with improvements in ESM LLR, AF ipLDDT, and RS 
dG across the rounds. a, The distribution of ESM LLR values for proposed H11-D4 mutant 
nanobodies across each round of optimization, with ESM LLR values computed relative to the 
input nanobody sequence from the previous round. Shown are the ESM LLR values of the top 
20 proposed mutant nanobodies per input nanobody, i.e., the proposed mutant nanobodies that 
proceed to AlphaFold-Multimer and Rosetta analysis. b, The AF ipLDDT and the RS dG of the 
top five proposed nanobodies, selected by WS, at the end of each round of optimization. c, The 
distribution of WS values of the top five proposed nanobodies at the end of each round of 
optimization. d-f, Analysis of the final set of 23 mutant nanobodies selected across all rounds of 
optimization, which exhibit superior ESM LRRWT, AF ipLDDT, and RS dG values compared to 
the wild-type nanobody. d, The distribution of ESM LLRWT values (ESM LLR of the mutant 
sequence compared to the wild-type sequence) for the selected nanobodies and the wild-type 
nanobody. e, The AF ipLDDT and RS dG values of the selected nanobodies and the wild-type 
nanobody. f, The structure (predicted by AlphaFold-Multimer followed by Rosetta relaxation) of 
the receptor binding domain of the spike protein of the KP.3 variant of SARS-CoV-2 (cyan) and 
the proposed nanobody mutant H11-D4 A14P-Y88V-K74T-R27L (green). Side chains are 
shown for all residues within 4Å of the opposite chain (i.e., interface residues). Mutant residues
in the proposed nanobody are shown in pink.
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Supplementary Fig. 4 | VHH-72 nanobody analysis. a-c, Evolution of mutant nanobody 
scores across four rounds of optimization, with improvements in ESM LLR, AF ipLDDT, and RS 
dG across the rounds. a, The distribution of ESM LLR values for proposed VHH-72 mutant 
nanobodies across each round of optimization, with ESM LLR values computed relative to the 
input nanobody sequence from the previous round. Shown are the ESM LLR values of the top 
20 proposed mutant nanobodies per input nanobody, i.e., the proposed mutant nanobodies that 
proceed to AlphaFold-Multimer and Rosetta analysis. b, The AF ipLDDT and the RS dG of the 
top five proposed nanobodies, selected by WS, at the end of each round of optimization. c, The 
distribution of WS values of the top five proposed nanobodies at the end of each round of 
optimization. d-f, Analysis of the final set of 23 mutant nanobodies selected across all rounds of 
optimization, which exhibit superior ESM LRRWT, AF ipLDDT, and RS dG values compared to 
the wild-type nanobody. d, The distribution of ESM LLRWT values (ESM LLR of the mutant 
sequence compared to the wild-type sequence) for the selected nanobodies and the wild-type 
nanobody. e, The AF ipLDDT and RS dG values of the selected nanobodies and the wild-type 
nanobody. f, The structure (predicted by AlphaFold-Multimer followed by Rosetta relaxation) of 
the receptor binding domain of the spike protein of the KP.3 variant of SARS-CoV-2 (cyan) and 
the proposed nanobody mutant VHH-72 R27Y-E31D-F37V-D89E (green). Side chains are 
shown for all residues within 4Å of the opposite chain (i.e., interface residues). Mutant residues
in the proposed nanobody are shown in pink.
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Supplementary Fig. 5 | Virtual Lab designs yield expressed and soluble nanobodies. 
Periplasmic extracts containing soluble nanobody were separated by reducing SDS-PAGE and
stained with Coomassie blue. An equal volume of periplasmic extract (8.3 uL) was loaded for 
each sample. Identifiers for each nanobody (A1 to H12) are shown, with the 4 unmutated 
parental nanobodies highlighted in yellow and the 92 Virtual Lab designs unhighlighted. The 
expected molecular weight for the nanobodies (~15 kDa) is enclosed in a red box.
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Supplementary Fig. 6 | Virtual Lab additional discussion analysis. a, The number of words 
(space-separated tokens) written by the Virtual Lab (human researcher and each LLM agent) in
the tools selection phase. b, The number of words written by the Virtual Lab in the AlphaFold 
implementation phase. c, The number of words written by the Virtual Lab in the Rosetta 
implementation phase. d, The number of words written by the Virtual Lab in the team selection 
phase. e, The number of words written by the Virtual Lab in the implementation agent selection 
phase.

Virtual Lab instruction prompts
Below are the prompts used throughout the Virtual Lab. In the prompts below, instances of 
“<something>” are filled in automatically depending on the context (e.g., “<team lead>” would be
filled in as “Principal Investigator” if the PI agent is used as the team lead in a meeting).

Principal Investigator
You are a Principal Investigator. Your expertise is in applying artificial intelligence to biomedical 
research. Your goal is to perform research in your area of expertise that maximizes the scientific
impact of the work. Your role is to lead a team of experts to solve an important problem in 
artificial intelligence for biomedicine, make key decisions about the project direction based on 
team member input, and manage the project timeline and resources.

Scientific Critic
You are a Scientific Critic. Your expertise is in providing critical feedback for scientific research. 
Your goal is to ensure that proposed research projects and implementations are rigorous, 
detailed, feasible, and scientifically sound. Your role is to provide critical feedback to identify and
correct all errors and demand that scientific answers that are maximally complete and detailed 
but simple and not overly complex.

Team meeting start
This is the beginning of a team meeting to discuss your research project. This is a meeting with
the team lead, <team lead>, and the following team members: <team members>.

Here are summaries of the previous meetings: <summaries>

Here is the agenda for the meeting: <agenda>

Here are the agenda questions that must be answered: <agenda questions>

Here are the agenda rules that must be answered: <agenda rules>

<team lead> will convene the meeting. Then, each team member will provide their thoughts on 
the discussion one-by-one in the order above. After all team members have given their input, 
<team lead> will synthesize the points raised by each team member, make decisions regarding
the agenda based on team member input, and ask follow-up questions to gather more
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information and feedback about how to better address the agenda. This will continue for 
<number of rounds> rounds. Once the discussion is complete, <team lead> will summarize the
meeting in detail for future discussions, provide a specific recommendation regarding the 
agenda, and answer the agenda questions (if any) based on the discussion while strictly 
adhering to the agenda rules (if any).

Team meeting team lead start
<team lead>, please provide your initial thoughts on the agenda as well as any questions you
have to guide the discussion among the team members.

Team meeting team member response
<team member>, please provide your thoughts on the discussion (round <current round 
number> of <number of rounds>). If you do not have anything new or relevant to add, you may
say "pass". Remember that you can and should (politely) disagree with other team members if 
you have a different perspective.

Team meeting team lead synthesis
This concludes round <current round number> of <number of rounds> of discussion. <team 
lead>, please synthesize the points raised by each team member, make decisions regarding the
agenda based on team member input, and ask follow-up questions to gather more information 
and feedback about how to better address the agenda.

Team meeting team lead summary
<team lead>, please summarize the meeting in detail for future discussions, provide a specific 
recommendation regarding the agenda, and answer the agenda questions (if any) based on the
discussion while strictly adhering to the agenda rules (if any).

As a reminder, here is the agenda for the meeting: <agenda>

As a reminder, here are the agenda questions that must be answered: <agenda questions>

As a reminder, here are the agenda rules that must be followed: <agenda rules>

Your summary should take the following form.

### Agenda

Restate the agenda in your own words.

### Team Member Input

Summarize all of the important points raised by each team member. This is to ensure that key
details are preserved for future meetings.
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### Recommendation

Provide your expert recommendation regarding the agenda. You should consider the input from 
each team member, but you must also use your expertise to make a final decision and choose 
one option among several that may have been discussed. This decision can conflict with the 
input of some team members as long as it is well justified. It is essential that you provide a clear,
specific, and actionable recommendation. Please justify your recommendation as well.

### Answers

For each agenda question, please provide the following:

Answer: A specific answer to the question based on your recommendation above.

Justification: A brief explanation of why you provided that answer.

### Next Steps

Outline the next steps that the team should take based on the discussion.

Individual meeting start
This is the beginning of an individual meeting with <team member> to discuss your research
project.

Here are summaries of the previous meetings: <summaries>

Here is the agenda for the meeting: <agenda>

Here are the agenda questions that must be answered: <agenda questions>

Here are the agenda rules that must be answered: <agenda rules>

<team member>, please provide your response to the agenda.

Individual meeting agent response
<agent>, please modify your answer to address <critic>’s msot recent feedback. Remember that
your ultimate goal is to make improvements that better address the agenda.

Individual meeting critic response
<critic>, please critique <agent>’s most recent answer. In your critique, suggest improvements
that directly address the agenda and any agenda questions. Prioritize simple solutions over 
unnecessarily complex ones, but demand more detail where detail is lacking. Additionally,
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validate whether the answer strictly adheres to the agenda and any agenda questions and 
provide corrective feedback if it does not. Only provide feedback; do not implement the answer
yourself.

Parallel meeting merge
Please read the summaries of multiple separate meetings about the same agenda. Based on 
the summaries, provide a single answer that merges the best components of each individual 
answer. Please use the same format as the individual answers. Additionally, please explain what
components of your answer came from each individual answer and why you chose to include 
them in your answer.

As a reference, here is the agenda from those meetings, which must be addressed here as well:
<agenda>

As a reference, here are the agenda questions from those meetings, which must be answered
here as well: <agenda questions>

As a reference, here are the agenda rules from those meetings, which must be followed here as
well: <agenda rules>

Coding rules
1. Your code must be self-contained (with appropriate imports) and complete.
2. Your code may not include any undefined or unimplemented variables or functions.
3. Your code may not include any pseudocode; it must be fully functioning code.
4. Your code may not include any hard-coded examples.
5. If your code needs user-provided values, write code to parse those values from the

command line.
6. Your code must be high quality, well-engineered, efficient, and well-documented

(including docstrings, comments, and Python type hints if using Python).

Nanobody design prompts
Below are the prompts (agendas and agenda questions) used in the Virtual Lab specifically for
the nanobody design project.

Team selection
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. You need to select a team of
three scientists to help you with this project. Please select the team members that you would 
like to invite to a discussion to create the antibody/nanobody design approach. Please list the 
team members in the following format, using the team member below as an example. You 
should not include yourself (Principal Investigator) in the list.
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Agent(
title="Principal Investigator",
expertise="applying artificial intelligence to biomedical research",
goal="perform research in your area of expertise that maximizes the scientific impact of the

work",
role="lead a team of experts to solve an important problem in artificial intelligence for 

biomedicine, make key decisions about the project direction based on team member input, and
manage the project timeline and resources",
)

Project specification
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Please create an 
antibody/nanobody design approach to solve this problem. Decide whether you will design 
antibodies or nanobodies. For your choice, decide whether you will design the 
antibodies/nanobodies de novo or whether you will modify existing antibodies/nanobodies. If 
modifying existing antibodies/nanobodies, please specify which antibodies/nanobodies to start
with as good candidates for targeting the newest variant of the SARS-CoV-2 spike protein. If 
designing antibodies/nanobodies de novo, please describe how you will propose 
antibody/nanobody candidates.

1. Will you design standard antibodies or nanobodies?
2. Will you design antibodies/nanobodies de novo or will you modify existing

antibodies/nanobodies (choose only one)?
3. If modifying existing antibodies/nanobodies, which precise antibodies/nanobodies will

you modify (please list 3-4)?
4. If designing antibodies/nanobodies de novo, how exactly will you propose

antibody/nanobody candidates?

Tools selection
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Your team previous decided to 
modify existing nanobodies to improve their binding to the newest variant of the SARS-CoV-2 
spike protein. Now you need to select machine learning and/or computational tools to implement
this nanobody design approach. Please list several tools (5-10) that would be relevant to this 
nanobody design approach and how they could be used in the context of this project. If 
selecting machine learning tools, please prioritize pre-trained models (e.g., pre-trained protein 
language models or protein structure prediction models) for simplicity.

1. What machine learning and/or computational tools could be used for this nanobody
design approach (list 5-10)?

2. For each tool, how could it be used for designing modified nanobodies?
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Tools implementation

Implementation agent selection
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Your team previous decided to 
modify existing nanobodies to improve their binding to the newest variant of the SARS-CoV-2 
spike protein. Your team needs to build three components of a nanobody design pipeline: ESM, 
AlphaFold-Multimer, and Rosetta. For each component, please select the team member who will
implement the component. A team member may implement more than one component.

1. Which team member will implement ESM?
2. Which team member will implement AlphaFold-Multimer?
3. Which team member will implement Rosetta?

ESM implementation
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Your team previous decided to
modify existing nanobodies to improve their binding to the newest variant of the SARS-CoV-2 
spike protein. Now you must use ESM to suggest modifications to an existing antibody. Please 
write a complete Python script that takes a nanobody sequence as input and uses ESM amino 
acid log-likelihoods to identify the most promising point mutations by log-likelihood ratio.

ESM improvement
You previously wrote a Python script that uses ESM to compute the log-likelihood ratio of point
mutations in a nanobody sequence (see summary). This script needs to be improved. Please 
rewrite the script to make the following improvements without changing anything else.

1. Replace "facebook/esm1b-t33_650M_UR50S" with
"facebook/esm1b_t33_650M_UR50S".

2. Run the calculations of the mutant log-likelihoods by iterating through the sequences in
batches of 16.

3. Add a progress bar to the batched mutant log-likelihood calculations.
4. Run the mutant log-likelihood calculations on CUDA but with no gradients.
5. Load the nanobody sequence from a user-specified CSV file that has the columns 

"sequence" and "name". Adapt your code to run the mutant log-likelihood calculations on
all sequences in the CSV file one-by-one.

6. For each sequence, save the mutant log-likelihoods to a CSV file with the format 
"mutated_sequence,position,original_aa,mutated_aa,log_likelihood_ratio". Ask the user
for a save directory and then save this CSV file in that directory with the name: 
<nanbody-name>.csv.
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AlphaFold-Multimer implementation
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Your team previous decided to
modify existing nanobodies to improve their binding to the newest variant of the SARS-CoV-2 
spike protein. Now you must use AlphaFold-Multimer to predict the structure of a
nanobody-antigen complex and evaluate its binding. I will run AlphaFold-Multimer on several 
nanobody-antigen complexes and you need to process the outputs. Please write a complete 
Python script that takes as input a directory containing PDB files where each PDB file contains
one nanobody-antigen complex predicted by AlphaFold-Multimer and outputs a CSV file 
containing the AlphaFold-Multimer confidence of each nanobody-antigen complex in terms of 
the interface pLDDT.

AlphaFold-Multimer improvement
You previously wrote a Python script that processes the outputs of AlphaFold-Multimer to 
calculate the confidence of nanobody-antigen complexes (see summary). This script needs to
be improved. Please rewrite the script to make the following improvements without changing 
anything else.

1. Replace the current imports of Chain and Residue with "from Bio.PDB.Chain import
Chain" and "from Bio.PDB.Residue import Residue".

2. Remove the logging setup and simply print any log messages to the console.
3. Replace the parallel processing with sequential processing to avoid getting an "OSError:

Too many open files".
4. Change the list of pdb_files to instead get all PDB files in the directory that follow the

pattern "**/*unrelaxed_rank_001*.pdb".
5. Change the calculation of average pLDDT to divide by the number of atoms rather than

the number of residues.
6. Return and save in the CSV both the number of residues and the number of atoms in the

interface.
7. Change the default distance threshold to 4.

Rosetta implementation
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Your team previous decided to
modify existing nanobodies to improve their binding to the newest variant of the SARS-CoV-2 
spike protein. Now you must use Rosetta to calculate the binding energy of nanobody-antigen 
complexes. You must do this in three parts. First, write a complete RosettaScripts XML file that 
calculates the binding energy of a nanobody-antigen complex as provided in PDB format, 
including any necessary preprocessing steps for the complex. Second, write an example 
command that uses Rosetta to run this RosettaScripts XML file on a given PDB file to calculate 
the binding energy and save it to a score file. Third, write a complete Python script that takes as 
input a directory with multiple Rosetta binding energy score files and outputs a single CSV file
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with the names and scores of each of the individual files in sorted order (highest to lowest
score).

Rosetta XML improvement
You previously wrote a RosettaScripts XML file to calculate the binding affinity of a
nanobody-antigen complex (see summary). This script needs to be improved. Please rewrite the
script to make the following improvements without changing anything else.

1. Replace "ref15.wts" with "ref2015.wts".
2. Remove the InterfaceEnergy filter since it is not valid in Rosetta.
3. Replace the entire output tag (including any nested tags) with <OUTPUT

scorefxn="ref15"/>.

Rosetta Python improvement
You previously wrote a Python script to aggregate multiple Rosetta binding energy score files 
into one CSV file (see summary). This script needs to be improved. Please rewrite the script to
make the following improvements without changing anything else.

1. Modify the extract_scores_from_file function so that it extracts the dG-separated value from a
file of the following form.

SEQUENCE:
SCORE: total_score complex_normalized dG_cross dG_cross/dSASAx100 
dG_separated dG_separated/dSASAx100 dSASA_hphobic dSASA_int dSASA_polar 
delta_unsatHbonds dslf_fa13 fa_atr fa_dun fa_elec fa_intra_rep fa_intra_sol_xover4 
fa_rep fa_sol hbond_E_fraction hbond_bb_sc hbond_lr_bb hbond_sc hbond_sr_bb
hbonds_int lk_ball_wtd nres_all nres_int        omega p_aa_pp packstat 
per_residue_energy_int pro_close rama_prepro          ref     sc_value side1_normalized 
side1_score side2_normalized side2_score yhh_planarity description
SCORE: -990.807 -2.914 -21.436 -1.857 -21.436 -1.857 
774.274 1154.088      379.813             12.000 -3.867 -1928.622 376.416 -541.777         3.745
54.944              265.303             1052.322             0.053      -84.023     -130.532      -54.069
-46.266 1.000 -41.725 340.000 55.000 39.977 -81.331 0.000
-2.699 2.349 -6.870 131.513 0.000 -2.236 -51.431 -3.031 -97.008 
1.706
KP3_Ty1-G59Y_unrelaxed_rank_001_alphafold2_multimer_v3_model_3_seed_000_0001

Workflow design
You are working on a research project to use machine learning to develop antibodies or 
nanobodies for the newest variant of the SARS-CoV-2 spike protein that also, ideally, have 
activity against other circulating minor variants and past variants. Your team previous decided to
modify existing nanobodies to improve their binding to the newest variant of the SARS-CoV-2 
spike protein. Your team has built three components of a nanobody design pipeline: ESM, 
AlphaFold-Multimer, and Rosetta. Each of these three tools can be used to score a nanobody
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mutation based on how the mutation affects binding to an antigen. Your goal is to start with an 
existing nanobody and iteratively add mutations to it to improve its binding to the newest variant
of the SARS-CoV-2 spike protein, resulting in 24 modified nanobodies with one or more 
mutations. Please determine how to use ESM, AlphaFold-Multimer, and Rosetta in this iterative 
design process. An important constraint is that ESM can evaluate all potential mutations to a 
nanobody in 5 minutes while AlphaFold-Multimer takes 30 minutes per mutation and Rosetta 
takes five minutes per mutation. The whole iterative process should take no more than a few 
days to complete. Note that AlphaFold-Multimer must be run before Rosetta on each mutation 
since Rosetta requires the nanobody-antigen structure predicted by AlphaFold-Multimer. 
Additionally, note that ESM log-likelihood ratios are generally in the range of 5-10 (higher is 
better), AlphaFold-Multimer interface pLDDT confidence scores are generally in the range of
60-80 (higher is better), and Rosetta binding energy scores are generally in the range of -20 to
-40 (lower is better).

1. In each iteration, what is the order of operations for evaluating mutations with ESM,
AlphaFold-Multimer, and Rosetta?

2. In each iteration, how many mutations (give a single number) will you evaluate with
ESM, AlphaFold-Multimer, and Rosetta?

3. At the end of each iteration, how will you weigh the ESM, AlphaFold-Multimer, and/or
Rosetta scores (give a formula) to rank the nanobody mutations?

4. At the end of each iteration, how many of the top-ranked mutations (give a single
number) will you keep for the next round?

5. How will you decide how many iterations of mutations to run?
6. After all of the iterations are complete, how exactly (step-by-step) will you select the final

set of 24 modified nanobodies from across the iterations for experimental validation?

Nanobody experimental validation
Codon optimized DNA sequences for the SARS-CoV-2 spike RBDs JN.1, KP.3, KP.2.3 and 
BA.226,53, modified to include a N-terminal signal peptide (MFVFLVLLPLVSSQ), a C-terminal 6x
his tag and a stop codon, were synthesized and cloned into pTwist-CMV-BetaGlobin (Twist 
Biosciences). RBDs were transiently expressed in Expi293 cells, and purified in parallel54 by 
Ni-NTA Excel affinity chromatography followed by desalting into PBS and concentration. The 
purification of Wuhan SARS-CoV-2 RBD has been described previously54. Codon optimized 
DNA sequences for nanobodies, modified to include a N-terminal pelB signal peptide 
(MKYLLPTAAAGLLLLAAQPAMA), a C-terminal 6x his tag and a stop codon, were synthesized 
and cloned into pET-29b(+) (Twist Biosciences). Nanobodies were expressed in 96-well and 
24-well format in auto-induction media55, and periplasmic fractions from 4 mL of cell culture 
pellet were released by mild lysis in 400 uL PBS, following methods as described56.

Multiplexed ELISA measurements were performed as generally described57, with the following 
modifications. Two array patterns were printed using a sciFLEXARRAYER S12. The first pattern
(Pattern 1) prints each spot in duplicate using a single 200-250uL drop for each spot. RBD 
antigens, BSA (negative control), and unmodified anti-Alpaca IgG VHH antibody (for total 
nanobody measurement) were printed at a source concentration of 50 ug/mL. The second
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pattern (Pattern 2), designed to increase the sensitive of binding, increased the number of drops
per spot to 3, added a higher purity JN.1 RBD, and substituted the anti-Alpaca IgG VHH 
antibody with an anti-His IgG (for total nanobody measurement). Periplasmic fractions were 
diluted in PBS-T (5% skim milk in PBS + 0.05% Tween-20), and RBD-bound nanobodies were 
recognized by anti-Alpaca IgG VHH secondary antibodies (Jackson ImmunoResearch,
128-065-230 (for H11-D4, Nb21 and VHH-72 series), and 128-065-232 (for Ty1 series) at
1:10000 dilution in PBS-T.

https://doi.org/10.1101/2024.11.11.623004
https://doi.org/10.1101/2024.11.11.623004
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

	النقاط الرئيسية في البحث:
	1. مفهوم المختبر الافتراضي (Virtual Lab):
	2. تطبيق المختبر الافتراضي على تصميم أجسام النانو لـ SARS-CoV-2:
	3. النتائج:

	الأهمية والتحديات:
	أهمية البحث:
	التحديات:

	الابتكارات الرئيسية:
	الكلمات المفتاحية:

